Ontleding van Geankerde staal traliemas blootgestel aan die omgewing baie

vier bene hoekyster / buis kommunikasie torings
Januarie 12, 2019
Riglyne oor Tegniese Spesifikasies Kommunikasie toring
Januarie 21, 2019

Ontleding van Geankerde staal traliemas blootgestel aan die omgewing baie

Ontleding van Geankerde staal traliemas blootgestel aan die omgewing baie

Staal rooster maste rang onder die mees doeltreffende draers strukture op die gebied van hoë konstruksie. Die nie-lineêre analise van 'n Geankerde staal traliemas gedoen word met behulp van die SAP 2000 eindige-element-program vir verskillende ys dikte waardes by 1500 m van hoogte bo seespieël. Na definisie van die geometriese model en kruis- artikel eienskappe, verskeie load kombinasies ontleed. uiteindelik, die wind spoed- ys dikte verhouding verkry, en die maksimum spoed wind wat die struktuur kan weerstaan, word bepaal vir verskillende ys diktes.

  1. inleiding

Lattice mast is a general name for different kinds of steel masts.A lattice mast or truss mast is a freestanding framework mast. These structures can be used as transmission masts especially for

voltages of more than 100 kilovolt, as radio masts (self-radiating masts or carriers for aerials), or as observation masts for safety purposes. Big and heavy frame sections are not required in these

masts. This is why they are lighter than other mast types, and the modules can easily be connected to one another.

Steel lattice masts have been used for many years in the countries where the ice and wind loads are considerable. This is due to increasing demands of modern industry with regard to communication and energy. There are different styles of masts on which small wind generators are mounted: freestanding, guyed lattice, and tilt-up. Freestanding masts are relatively heavy duty, and they stay upright without the help of guy cables. Guyed lattice masts use guy cables to anchor the mast and keep it upright using a relatively small quantity of concrete. Cables stretch from three points near the top of the mast to the ground at some distance from the base of the mast. These constructions are quite light compared to freestanding masts, and therefore constitute the least expensive means for supporting a wind turbine. Maar, they require a larger area to accommodate the guy cables.

The technical efficiency and durability of steel lattice masts have increased in recent years. The behaviour of steel lattice masts has been investigated in literature. As the design procedure is significant in these masts, the structural analysis is related to the geometrical model and section properties. so, the module production and assembly steps, and economic costs, are directly related to the design of masts. Steel lattice masts on land are vulnerable structures. They are mostly affected by environmental loading. Wind loads are the most effective design criteria for these structures. Maar, the ice effect must also be taken into consideration, especially at high elevations. In cold regions, these two effects are combined. daarom, the relationship between the wind and ice must be investigated by conducting proper finite-element analyses to avoid the collapse of such structures. In this paper, the non linear analysis of a guyed steel lattice mast 80 m in height is performed using the SAP 2000 program. While the model is constituted according to TS 648 load conditions are taken from TS 498. The altitude of the structure is taken to be 1500 m, and the snow region IV is adopted, which is the most conservative option. Op hierdie manier, the analysis can also be used for other snow regions. The structure was first analysed without any ice effect. Afterwards, the ice thickness was gradually increased, and the relationship between the wind speed and ice thickness was determined.

  1. Materialand method

Proper sections and angles of the steel lattice mast are first determined. Afterwards, the three dimensional finite element model is given in Figure 1. Top view of the model is presented

in Figure 2. Face sections of the model, showing the distances with angles, are shown in Figure 3 and Figure 4.

Figuur 1. 3-D model

 

Figuur 2. Top beskou

 

 

Figuur 3. A en B gesig artikels

 

 

Figuur 4. C gesig artikel

tafel 1. materiaal eienskappe

materiaal

tipe

trek

krag

[MPa]

opbrengs

krag

[MPa]

St52 (S355)

510

360

tafel 2. artikel eienskappe

lid

tipe

artikel

tipe

grootte

[mm]

kolom

lede

pyp

48×7

vertikale

lede

omsendbrief

16

diagonale

lede

omsendbrief

16

Guy members

omsendbrief

16

tafel 3 Windspoed en vele volgens hoogte

Hoogte

[m]

wind spoed

“v”

[m / s]

wind vrag

“q”

2

[kg / m ]

0-8

28

50

8-20

36

80

20-80

46

130

A module 3015 mm in length is made of steel members. Columns are placed at an angle of 900 to the ground. Vertical steel members connect columns to one another, and are placed vertically with respect to the columns. Diagonal members are placed by definite angles to the columns, and they also connect the columns to one another. A column with diagonal and vertical members that constitute the module, are shown in Figure 5.

 

Figuur 5. module lede

Guy members and modules are named according to the total height from the ground level. The guy and section numbers, with related heights, are presented in Figure 6.

tafel 4. Hoogte en sneeu eienskappe

Hoogte

[m]

sneeu

streek

sneeu vrag qs

2

[kg / m ]

1500

IV

176

tafel 5. Ys eienskappe

gewig van eenheid volume

[kN / mm ³ ]

7

Daar is 26 modules in die mas. die kolom, vertikale,en skuins lede in elke vlak van die module is shownin figuur 7. Positiewe en negatiewe windrigtings wat die
module word ook aangebied in die figuur.

tafel 6 artikel eienskappe

 

lid

 

artikel

tipe

artikel

grootte

[mm]

artikel

omtrek

[cm]

artikel

gebied

2

[cm ]

kolom

pyp

48×7

15.08

9.02

vertikale

omsendbrief

16

5.03

2.01

diagonale

omsendbrief

16

5.03

2.01

Guy

omsendbrief

16

5.03

2.01

kolom

pyp

48×7

15.08

9.02

vertikale

omsendbrief

16

5.03

2.01

diagonale

omsendbrief

16

5.03

2.01

Guy

omsendbrief

16

5.03

2.01

kolom

pyp

48×7

15.08

9.02

vertikale

omsendbrief

16

5.03

2.01

diagonale

omsendbrief

16

5.03

2.01

Guy

omsendbrief

16

5.03

2.01

kolom

pyp

48×7

15.08

9.02

vertikale

omsendbrief

16

5.03

2.01

diagonale

omsendbrief

16

5.03

2.01

Guy

omsendbrief

16

5.03

2.01

 

 

Load combinations used in the analysis are given in Eqn (1) and Eqn (2) as follows. The combinations are constituted by Snow loads, ice loads according to ice thickness values,

and wind loads effecting different heights of the lattice mast with wind speeds are given in Table 7.

 

lid

sneeu

vrag

2

[kg / m ]

versprei

sneeu vrag

[kg / m]

Ys

dikte

[mm]

versprei

ys vrag

[kg / m]

wind

spoed

[km / h]

wind vrag volgens om hoogte

[kg / m]

0-8 m

8-20 m

20-80 m

kolom

 

176

-

 

30

5.15

 

209

12.18

19.49

26.81

vertikale

lid

4.42

3.03

4.06

6.50

8.94

diagonale

lid

4.42

3.03

4.06

6.50

8.94

Guy

4.42

3.03

4.06

6.50

8.94

kolom

 

176

-

 

20

2.99

 

217

12.63

20.21

27.79

vertikale

lid

4.42

1.58

4.21

6.74

9.26

diagonale

lid

4.42

1.58

4.21

6.74

9.26

Guy

4.42

1.58

4.21

6.74

9.26

kolom

 

176

-

 

10

1.28

 

223

12.96

20.73

28.50

vertikale

lid

4.42

0.57

4.32

6.91

9.50

diagonale

lid

4.42

0.57

4.32

6.91

9.50

Guy

4.42

0.57

4.32

6.91

9.50

kolom

 

176

-

 

0

-

 

226

13.14

21.03

28.92

vertikale

lid

4.42

-

4.38

7.01

9.64

diagonale

lid

4.42

-

4.38

7.01

9.64

Guy

4.42

-

4.38

7.01

9.64

load-effekte lateraal lede. Versprei sneeu vrag word bereken deur die oorweging van top oppervlakte van die lede.

Laat 'n antwoord

Jou e-posadres sal nie gepubliseer word nie. Verpligte velde gemerk *