Analyse des Mastes abgespannt Stahlgitter zu Umweltbelastungen ausgesetzt

vierbeinigen Winkeleisen / Rohr Kommunikation Türme
Januar 12, 2019
Leitlinien für Technische Daten Communication tower
Januar 21, 2019

Analyse des Mastes abgespannt Stahlgitter zu Umweltbelastungen ausgesetzt

Analyse des Mastes abgespannt Stahlgitter zu Umweltbelastungen ausgesetzt

Stahlgittermaste gehört zu den effizientesten tragenden Strukturen im Bereich des Hochhausbau. Die nicht-lineare Analyse eines abgespannten Stahlgittermastes ist das SAP durchgeführt, unter Verwendung von 2000 Finite-Elemente-Programm für unterschiedliche Eisdicke Werte an 1500 m Höhe. Nach der Definition des geometrischen Modells und Quer- Abschnitt Eigenschaften, verschiedene Lastkombinationen werden analysiert. Finally, die Windgeschwindigkeit- Eisdicke Beziehung erhalten wird, und die maximale Windgeschwindigkeit, die die Struktur standhalten kann, wird für verschiedene Eisdicke bestimmt.

  1. Einführung

Lattice mast is a general name for different kinds of steel masts.A lattice mast or truss mast is a freestanding framework mast. These structures can be used as transmission masts especially for

voltages of more than 100 Kilovolt, as radio masts (self-radiating masts or carriers for aerials), or as observation masts for safety purposes. Big and heavy frame sections are not required in these

masts. This is why they are lighter than other mast types, and the modules can easily be connected to one another.

Steel lattice masts have been used for many years in the countries where the ice and wind loads are considerable. This is due to increasing demands of modern industry with regard to communication and energy. There are different styles of masts on which small wind generators are mounted: freestanding, guyed lattice, and tilt-up. Freestanding masts are relatively heavy duty, and they stay upright without the help of guy cables. Guyed lattice masts use guy cables to anchor the mast and keep it upright using a relatively small quantity of concrete. Cables stretch from three points near the top of the mast to the ground at some distance from the base of the mast. These constructions are quite light compared to freestanding masts, and therefore constitute the least expensive means for supporting a wind turbine. jedoch, they require a larger area to accommodate the guy cables.

The technical efficiency and durability of steel lattice masts have increased in recent years. The behaviour of steel lattice masts has been investigated in literature. As the design procedure is significant in these masts, the structural analysis is related to the geometrical model and section properties. So, the module production and assembly steps, and economic costs, are directly related to the design of masts. Steel lattice masts on land are vulnerable structures. They are mostly affected by environmental loading. Wind loads are the most effective design criteria for these structures. jedoch, the ice effect must also be taken into consideration, especially at high elevations. In cold regions, these two effects are combined. Deshalb, the relationship between the wind and ice must be investigated by conducting proper finite-element analyses to avoid the collapse of such structures. In this paper, the non linear analysis of a guyed steel lattice mast 80 m in height is performed using the SAP 2000 program. While the model is constituted according to TS 648 load conditions are taken from TS 498. The altitude of the structure is taken to be 1500 m, and the snow region IV is adopted, which is the most conservative option. Auf diese Weise, the analysis can also be used for other snow regions. The structure was first analysed without any ice effect. Afterwards, the ice thickness was gradually increased, and the relationship between the wind speed and ice thickness was determined.

  1. Materialand method

Proper sections and angles of the steel lattice mast are first determined. Afterwards, the three dimensional finite element model is given in Figure 1. Top view of the model is presented

in Figure 2. Face sections of the model, showing the distances with angles, are shown in Figure 3 and Figure 4.

Zahl 1. 3-D model

 

Zahl 2. oben Aussicht

 

 

Zahl 3. EIN und B Gesicht Abschnitte

 

 

Zahl 4. C Gesicht Sektion

Tabelle 1. Material properties

Material

Art

Zug

Stärke

[MPa]

Ausbeute

Stärke

[MPa]

St52 (S355)

510

360

Tabelle 2. Sektion properties

Mitglied

Art

Abschnitt

Art

Größe

[Millimeter]

Säule

Mitglieder

Rohr

48×7

Vertikale

Mitglieder

Kreisförmig

16

Diagonal

Mitglieder

Kreisförmig

16

Guy members

Kreisförmig

16

Tabelle 3 Windgeschwindigkeit und Windlasten nach Höhe

Höhe

[m]

Wind Geschwindigkeit

“v”

[Frau]

Wind Belastung

“q”

2

[kg/m ]

0-8

28

50

8-20

36

80

20-80

46

130

A module 3015 mm in length is made of steel members. Columns are placed at an angle of 900 to the ground. Vertical steel members connect columns to one another, and are placed vertically with respect to the columns. Diagonal members are placed by definite angles to the columns, and they also connect the columns to one another. A column with diagonal and vertical members that constitute the module, are shown in Figure 5.

 

Zahl 5. Modul Mitglieder

Guy members and modules are named according to the total height from the ground level. The guy and section numbers, with related heights, are presented in Figure 6.

Tabelle 4. Höhe und Schneeeigenschaften

Höhe

[m]

Schnee

Region

Schnee Belastung qs

2

[kg/m ]

1500

IV

176

Tabelle 5. Eis properties

Gewicht von Einheit volume

[kN / mm³ ]

7

There are 26 Module in dem Gittermast. Die Kolumne, vertikal,und diagonale Glieder in jeder Seite des Moduls sind shownin Fig 7. Positive und negative Richtungen Wind beeinflussen die
Modul sind ebenfalls in der Figur dargestellt.

Tabelle 6 Abschnitt Eigenschaften

 

Mitglied

 

Abschnitt

Art

Abschnitt

Größe

[Millimeter]

Abschnitt

Umfang

[cm]

Abschnitt

Bereich

2

[cm ]

Säule

Rohr

48×7

15.08

9.02

Vertikale

Kreisförmig

16

5.03

2.01

Diagonal

Kreisförmig

16

5.03

2.01

Kerl

Kreisförmig

16

5.03

2.01

Säule

Rohr

48×7

15.08

9.02

Vertikale

Kreisförmig

16

5.03

2.01

Diagonal

Kreisförmig

16

5.03

2.01

Kerl

Kreisförmig

16

5.03

2.01

Säule

Rohr

48×7

15.08

9.02

Vertikale

Kreisförmig

16

5.03

2.01

Diagonal

Kreisförmig

16

5.03

2.01

Kerl

Kreisförmig

16

5.03

2.01

Säule

Rohr

48×7

15.08

9.02

Vertikale

Kreisförmig

16

5.03

2.01

Diagonal

Kreisförmig

16

5.03

2.01

Kerl

Kreisförmig

16

5.03

2.01

 

 

Load combinations used in the analysis are given in Eqn (1) and Eqn (2) as follows. The combinations are constituted by Snow loads, ice loads according to ice thickness values,

and wind loads effecting different heights of the lattice mast with wind speeds are given in Table 7.

 

Mitglied

Schnee

Belastung

2

[kg/m ]

Verteilt

Schnee Belastung

[kg/m]

Eis

Dicke

[Millimeter]

Verteilt

Eis Belastung

[kg/m]

Wind

Geschwindigkeit

[km/h]

Wind Belastung gemäß zu Höhe

[kg/m]

0-8 m

8-20 m

20-80 m

Säule

 

176

 

30

5.15

 

209

12.18

19.49

26.81

Vertikale

Mitglied

4.42

3.03

4.06

6.50

8.94

Diagonal

Mitglied

4.42

3.03

4.06

6.50

8.94

Kerl

4.42

3.03

4.06

6.50

8.94

Säule

 

176

 

20

2.99

 

217

12.63

20.21

27.79

Vertikale

Mitglied

4.42

1.58

4.21

6.74

9.26

Diagonal

Mitglied

4.42

1.58

4.21

6.74

9.26

Kerl

4.42

1.58

4.21

6.74

9.26

Säule

 

176

 

10

1.28

 

223

12.96

20.73

28.50

Vertikale

Mitglied

4.42

0.57

4.32

6.91

9.50

Diagonal

Mitglied

4.42

0.57

4.32

6.91

9.50

Kerl

4.42

0.57

4.32

6.91

9.50

Säule

 

176

 

0

 

226

13.14

21.03

28.92

Vertikale

Mitglied

4.42

4.38

7.01

9.64

Diagonal

Mitglied

4.42

4.38

7.01

9.64

Kerl

4.42

4.38

7.01

9.64

Lasteinwirkungen Seitenelemente. Verteilen Schneelast wird unter Berücksichtigung obere Fläche der Mitglieder berechnet.

Hinterlasse eine Antwort

Deine Email-Adresse wird nicht veröffentlicht. erforderliche Felder sind markiert *